Bactericidal, fungicidal and virucidal properties of nanosilver. Mode of action and potential application. A review

Anna Chmielowiec-Korzeniowska

Department of Animal Hygiene and Environment University of Life Sciences in Lublin, Akademicka 13, Lublin

Łukasz Krzosek

Department of Animal Hygiene and Environment University of Life Sciences in Lublin, Akademicka 13, Lublin

Leszek Tymczyna

Department of Animal Hygiene and Environment University of Life Sciences in Lublin, Akademicka 13, Lublin

Magdalena Pyrz

Department of Animal Hygiene and Environment University of Life Sciences in Lublin, Akademicka 13, Lublin

Agata Drabik

Department of Animal Hygiene and Environment University of Life Sciences in Lublin, Akademicka 13, Lublin



Abstrakt

Silver has long been known to show antibacterial activity but it was only the development of the nanotechnology which allowed to create substances and materials of the new generation. Preparations with embedded silver nanoparticles exhibit even stronger biocidal effects against a wide spectrum of harmful microorganisms, i.e. bacteria, fungi and viruses (even HIV). Multidirectional activity of nanosilver compromises the induction of microbial defensive mechanisms and stops the development of bacterial resistance. Nanostructured silver damages the cell structure, affects energy metabolism and the genetic material of microorganisms. The nanosilver parameters are dependent on its shape, size and an engineering mode. Nanoscale silver bound to solid surface has been incorporated in wound dressings as it was demonstrated to reduce wound bioburden, prevent or treat local infection. The studies are also conducted on silver nanoparticles application in implantology and tissue engineering as well as in food industry for disinfection of air and food production areas. The evidence-based scientific assessment of nanosilver highlights its relatively low toxicity to humans.

Słowa kluczowe:

nanosilver, disinfection, toxicity

Ahmadi J., 2009. Aplication of different levels of silver nanopracticles in food on the performance and some blood parameters of broiler chickens. World App. Sc. J., 7, 24–27.
Choi O., Hu Z., 2008. Size Dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ. Sci. Technol. 42, 4583–4588.
Dobrzański Z., Zygadlik K., Patkowska-Sokoła B., Nowakowski P., Janczak M., Sobczak A., Bodkowski R., 2010. Efektywność nanosrebra i sorbentów mineralnych w redukcji emisji
amoniaku z odchodów zwierzęcych. Przem. Chem. 4, 348–351.
Egger S., Lehmann R.P., Height M.J., Loessner M.J., Schuppler M., 2009. Antimicrobial properties of a novel silver-silica nanocomposite material. Appl. Environ. Microbiol. 75, 2973–
2976.
Elechiguerra J.L., Burt J.L., Morones J.R., Camacho-Bragado A., Gao X., Lara H.H., Yacaman M.J., 2005. Interaction of silver nanoparticles with HIV-1, J. Nanobiotechnol. 3, 6–15.
Falkiewicz-Dulik M., Macura A.B., 2008. Nanosrebro jako substancja biostabilizująca materiały obuwnicze w profilaktyce grzybicy stóp. Mikol. Lek. 15 (3), 145–150.
Feng Q.L., Wu J., Chen G.Q., Cui F.Z., Kim T.N., Kim J.O., 2000. A mechanism study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus J. Biomed.
Mater. Res. 52, 662–668.
Gajbhiye M., Kesharwani J., Ingle A., Gade A., Rai M., 2009. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole.
Nanomedicine 5, 382–386.
Gogoi S.K., Gopinath P., Paul A., Ramesh A., Ghosh S.S., Chattopadhyay A., 2006. Green Fluorescent Protein-Expressing Escherichia coli as a Model System for Investigating the Antimicrobial
Activities of Silver Nanoparticles. Langmuir 22, 9322–9328.
Holt K.B., Bard A.J., 2005. Interaction of silver(i) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial
mechanism of micromolar Ag+. Biochemistry 44, 13214–13223.
Kheybari S., Samadi N., Hosseini S.V., Fazeli A., Fazeli M.R., 2010. Synthesis and antimicrobial effects of silver nanoparticles produced by chemical reduction method. DARU 18, 168–172.
Kim K.J., Sung W.S., Moon S-K., Choi J.S., Kim J.G., Lee D.G., 2008. Antifungal Effect of Silver Nanoparticles on Dermatophytes. J. Microbiol. Biotechnol. 18, 1482–1484.
Kim Y.S., Song M.Y., Park J.D,. Song K.S, Ryu H.R., Chung Y.H., Chang H.K., Lee J.H., Oh K.H., Kelman B.J., Hwang I.K., Yu I.J., 2010. Subchronic oral toxicity of silver nanoparticles.
Part. Fibre. Toxicol. 7, 20.
Klaus T., Joerger R., Olsson E., Granqvist C.G., 1999. Silver-based crystalline nanoparticles, microbially fabricated. Proc. Natl. Acad. Sci. USA 96, 13611–13614.
Korani M., Rezayat SM., Gilani K., Arbabi Bidgoli S., Adeli S., 2011. Acute and subchronic dermal toxicity of nanosilver in guinea pig. Int. J. Nanomed. 6, 855–862.
Kowalski Z., Makara A., Banach M., Kowalski M., 2010. Zastosowanie preparatów nanosrebra do oczyszczania powietrza z instalacji klimatyzacyjnej zakładów mięsnych. Przem. Chem. 89,
434–436.
Kvı´tek L., Panáček A., Soukupova J., Kolár M., Večeřova R., Prucek R., Holecova M., Zbořil R., 2008. Effect of surfactants and polymers on stability and antibacterial activity of silver
nanoparticles (NPs). J. Phys. Chem. C 112, 5825–5834.
Li L., Li Y., Li J., Yao L., Mak A.E.T., Ko F., Qin L., 2009. Antibacterial properties of nanosilver PLLA fibrous membranes. J. Nanomater. 1–5.
Liao J., Anchun M., Zhu Z., Quan Y., 2010. Antibacterial titanium plate deposited by silver nanoparticles exhibits cell compatibility Int. J. Nanomed. 5, 337–342.
Li S., Shen Y., Xie A., Yu X., Qiu L., Zhang L., Zhang Q., 2007. Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green. Chem. 9, 852–858.
Lok C.N., Ho C.M., Chen R., He Q.Y., Yu W.Y., Sun H., Kwong-Hang Tam P., Chiu J. F., Che C. M., 2006. Proteomic analysis of the mode of antibacterial action of silver nanoparticles, J.
Proteome Res., 5, 916–924.
Malina D., Sobczak-Kupiec A., Kowalski Z., 2010. Nanocząstki srebra. Przegląd chemicznych metod syntezy. Czas. Tech. Chemia 10, 183–192.
Mehrbod P., Motamed N., Tabatabaian M., Soleimani Estyar R., Amini E., Shahidi M., Kheiri M.T., 2009. In vitro antiviral effect of "nanosilver" on influenza virus. DARU 17, 88–93.
Morones J.R., Elechiguerra J.L., Camacho A., Holt K., Kouri J.B., Tapia Ramírez J., Yacaman M.J., 2005. The bactericidal effect of silver nanoparticles. Nanotechnology 16, 2346–2353.
Myczko R., Kołodziejczak T., 2008. Air cleaning in livestock building by applying the granular filtration layer. Int. Agrophys. 22, 245–248.
Pal S., Tak Y.K., Song J.M., 2007. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli.
Appl. Environ. Microbiol. 73, 1712–1720.
Panigrahi S., Kundu S., Ghosh S., Nath S., Pal T., 2004. General method of synthesis for metal nanoparticles. J. Nanopart. Res. 6, 411–414.
Sondi I., Salopek-Sondi B., 2004. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid. Interface. Sci. 275, 177–182.
Stebounova L.V., Adamcakova-Dodd A., Kim J.S., Park H., O’Shaughnessy P. T., Grassian V.H., Thorne P.S., 2011. Nanosilver induces minimal lung toxicity or inflammation in a subacute
murine inhalation model. Part. Fibre Toxicol. 8, 5–17.
Wright J.B., Lam K., Hansen D., Burrell R.E., 1999. Efficacy of topical silver against fungal burn wound pathogens. Am. J. Infect. Control 27, 344–350.
Wzorek Z., Konopka M., 2007. Nanosrebro – nowy środek bakteriobójczy. Czas. Tech. Chemia 104, 175–181.
Xu L., Li X., Takemura T., Hanagata N., Wu G., Lee L., 2012. Genotoxicity and molecular response of silver nanoparticle (NP)-based hydrogel. J. Nanobiotechnol. 10, 16.
Yoon K.Y., Byeon J.H., Park W.C., Hwang J., 2008. Antimicrobial effect of silver particles on bacterial contamination of activated carbon filters. Environ. Sci. Technol. 42, 1251–1255.

Opublikowane
2013-06-30



Anna Chmielowiec-Korzeniowska 
Department of Animal Hygiene and Environment University of Life Sciences in Lublin, Akademicka 13, Lublin
Łukasz Krzosek 
Department of Animal Hygiene and Environment University of Life Sciences in Lublin, Akademicka 13, Lublin
Leszek Tymczyna 
Department of Animal Hygiene and Environment University of Life Sciences in Lublin, Akademicka 13, Lublin
Magdalena Pyrz 
Department of Animal Hygiene and Environment University of Life Sciences in Lublin, Akademicka 13, Lublin
Agata Drabik 
Department of Animal Hygiene and Environment University of Life Sciences in Lublin, Akademicka 13, Lublin



Licencja

Od 2022 r. artykuły są udostępniane na zasadach licencji Creative Commons uznanie autorstwa 4.0 międzynarodowa (CC BY 4.0). Artykuły opublikowane przed 2022 r. są dostępne na zasadach licencji Creative Commons uznanie autorstwa – użycie niekomercyjne – bez utworów zależnych 4.0 międzynarodowa  (CC BY-NC-ND 4.0).

Przysłanie artykułu do redakcji oznacza, że nie był on opublikowany wcześniej, nie jest rozpatrywany do publikacji w innych wydawnictwach.

Autor podpisuje oświadczenie o oryginalności dzieła i wkładzie poszczególnych osób.


Inne teksty tego samego autora