Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin

Cisgenesis as a novel prospect for crop improvement. A review

KAROLINA DUDZIAK

Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland

MAGDALENA SOZONIUK

Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland

KRZYSZTOF KOWALCZYK

Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland

MICHAŁ NOWAK

Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland


Abstract

Nowadays, the development of new biotechnological methods is necessary to satisfy requirements of market to produce enough good-quality food. Application of novel scientific approaches can be of great importance for improving the quality and quantity of plant crops. However, the most efficient strategies are based on genetic modification, which is still very controversial issue. GMO opponents do not accept the use of genetic engineering in crop improvement and production of new varieties suited for organic agriculture. Major discussion among various scientific and social issues concerns the possibility of existence of unintended effects of GMO both on human and world safety. Political, ethical, and social fears are related mostly to the best known transgenic approach, which is 'transgenesis'. Novel strategies and techniques are therefore required in the development of genetically engineered crops of the future. Nowadays, a new plant breeding technique, called 'cisgenesis' is intensively studied. In this paper, we review the most common strategies for crops improvement and describe cisgenesis as an alternative to transgenesis for safe and eco-friendly agriculture.

Keywords:

cisgenesis, genetically modified plants, plant crops improvement, transgenesis

Barbieri M., Belfanti E., Tartarini S., Vinatzer B.A., Sansavini S., Silfverberg-Dilworth E., Gianfranceschi L., Hermann D., Patocchi A., Gessler C., 2003. Progress of map-based cloning of the Vf-resistance gene and functional verification: preliminary results from expression stud-ies in transformed apple. HortScience 38, 329–331.

Belfanti E., Silfverberg-Dilworth E., Tartarini S., Patocchi A., Barbieri M., Zhu J., Vinatzer B.A., Gianfranceschi L., Gessler C., Sansavini S., 2004. The HcrVf2 gene from a wild apple confers scab resistance to a transgenic cultivated variety. Proc. Natl. Acad. Sci. U.S.A. 101, 886–890, https://doi.org/10.1073/pnas.0304808101.

Bergelson J., Kreitman M., Stahl E. A., Tian D., 2001. Evolutionary dynamics of plant R-genes. Science 292, 2281–2285, https://doi.org/10.1126/science.1061337.

Cardi T., 2016. Cisgenesis and genome editing: Combining concepts and efforts for a smarter use of genetic resources in crop breeding. Plant Breed. 135(2), 139–147, https://doi.org/ 10.1111/pbr.12345.

Conner A.J., Barrell P.J., Baldwin S.J., Lokerse A.S., Cooper P.A., Erasmuson A.K., Nap J.P.H., Jacobs J.M.E., 2006. Intragenic vectors for gene transfer without foreign DNA. Euphytica 154(3), 341–353, https://doi.org/10.1007/s10681-006-9316-z.

den Nijs H.C.M., Bartsch D., Sweet J., 2004. Introgression from genetically modified plants into wild relatives. CABI, Wallingford.

Edenbrandt A.K., House L.A., Gao Z., Olmstead M., Gray D., 2018. Consumer acceptance of cis-genic food and the impact of information and status quo. Food Qual. Prefer. 69, 44–52, https://doi.org/10.1016/j.foodqual.2018.04.007.

Gao Y., de Bang T.C., Schjoerring J.K., 2018. Cisgenic overexpression of cytosolic glutamine synthetase improves nitrogen utilization efficiency in barley and prevents grain protein decline under elevated CO2. Plant Biotechnol. J. 1–13, https://doi.org/10.1111/pbi.13046.

Holme I. B., Dionisio G., Brinch-Pedersen H., Wendt T., 2012. A cisgenic approach for improving the bioavailability of phosphate in the barley grain, Isb News Report, Vol. March, 8–11.

Holme I. B., Wendt T., Holm P. B., 2013a. Current Developments of Intragenic and Cisgenic Crops. Isb News Report (July), http://www.isb.vt.edu/news/2013/Jul/HolmeWendtHolm.pdf.

Holme I.B., Wendt T., Holm P.B., 2013b. Intragenesis and cisgenesis as alternatives to transgenic crop development. Plant Biotechnol. J. 11(4), 395–407, https://doi.org/10.1111/pbi.12055.

Hou H., Atlihan N., Lu Z.X., 2014. New biotechnology enhances the application of cisgenesis in plant breeding. Front. Plant Sci. 5, 389, https://doi.org/10.3389/fpls.2014.00389.

Jacobsen E. and Schouten H. J., 2009. Cisgenesis: an important sub-invention for traditional breed-ing companies. Euphytica 170:235–247, https://doi.org/10.1007/s10681-009-0037-y.

James C., 2011. Global Status of Commercialized Biotech/GM Crops: 2011. ISAAA Brief 43. ISAAA, Ithaca, NY.

Jo K.R., Kim C.J., Kim S.J., Kim T.Y., Bergervoet M., Jongsma M.A., Visser R.G., Jacobsen E., Vossen J.H., 2014. Development of late blight resistant potatoes by cisgene stacking. BMC Bi-otechnol. 14, 50, https://doi.org/10.1186/1472-6750-14-50.

Jochemsen H., Schouten H.J., 2000. Ethische beoordeling van genetische modificatie. In: Jochem-sen, H. (ed.), Toetsen en Begrenzen. Een Ethische en Politieke Beoordeling van de Moderne Biotechnologie. Buijten and Schipperheijn, Amsterdam, , 88–95.

Joshi S.G., 2010. Towards durable resistance to apple scab using cisgenes. Wageningen University, Wageningen, PhD Thesis.

Keller B., Feuillet C., Messmer M., 2001. Genetics of disease resistance. Basic concepts and applica-tion in resistance breeding. In: Slusarenko A.J., Fraser R.S.S., van Loon L.C. (eds), Mecha-nisms of Resistance to Plant Diseases. Kluwer Academic Press, 101–160.

Kost T.D., Gessler C., Jänsch M., Flachowsky H., Patocchi A., Broggini G.A.L., 2015. Develop-ment of the first cisgenic apple with increased resistance to fire blight. PLoS ONE 10(12), 1–17, https://doi.org/10.1371/journal.pone.0143980.

Lombardo L., Zelasco S., 2016. Biotech approaches to overcome the limitations of using transgenic plants in organic farming. Sustainability (Switzerland) 8(5), 1–7.

Lusser M., Parisi C., Plan D., Rodríguez-Cerezo E., 2011. New plant breeding techniques: State-of-the-art and prospects for commercial development (JRC IPTS Report EUR 24760 EN). Seville: JRC, Institute for Prospective Technological Studies (IPTS).

Maltseva E.R., Iskakova G.A., Rsaliev A.S., Skiba Y.A., Naizabaeva D.A., Ismagulova G., Ismagul A., Eliby S., 2018. Assessment of cisgenic bread wheat lines carrying class I chitinase gene to leaf rust. J. Biotechnol. 280:S80-S81, https://doi.org/10.1016/j.jbiotec.2018.06.264.

Nielsen K.M., 2003. Transgenic organisms – time for conceptual diversification? Nat. Biotechnol. 21(3), 227–228, https://doi.org/10.1038/nbt0303-227.

Rommens C.M., Humara J.M., Ye J., Yan H., Richael C., Zhang L., Perry R., Swords K., 2004. Crop improvement through modification of the plant’s own genome. Plant Physiol. 135, 421–431, https://doi.org/10.1104/pp.104.040949.

Russell A.W., Sparrow R., 2008. The case for regulating intragenic GMOs. J. Agric. Environ. Ethics 21(2), 153–181, https://doi.org/10.1007/s10806-007-9074-5.

Schmidt R., 2002. Plant genome evolution: lessons from comparative genomics at the DNA level. Plant Mol. Biol. 48, 21–37, https://doi.org/10.1007/978-94-010-0448-0_2.

Schouten H.J., Krens F.A., Jacobsen E., 2006. Cisgenic plants are similar to traditionally bred plants: international regulations for genetically modified organisms should be altered to exempt cisgenesis. EMBO Rep. 7(8), 750–753, https://doi.org/10.1038/sj.embor.7400769.

Szankowski I., Waidmann S., Degenhardt J., Patocchi A., Paris R., Silfverberg-Dilworth E., Brog-gini G., Gessler C., 2009. Highly scab-resistant transgenic apple lines achieved by introgres-sion of HcrVf2 controlled by different native promoter lengths. Tree Genet. Genomes 5, 349–358, https://doi.org/10.1007/s11295-008-0191-8.

Tamang T., Park J., Kakeshpour T., Valent B., Jia Y., Want G., Park S., 2018. Development of selectable marker-free cisgenic rice plants expressing a blast resistance gene Pi9. World Con-gress on In vitro Biology, 54, 544.

Vanblaere T., Szankowski I., Schaart J., Schouten H., Flachowsky H., Broggini, G.A. L., Gessler C., 2011. The development of a cisgenic apple plant. J. Biotechnol. 154, 304–311, https://doi.org/10.1016/j.jbiotec.2011.05.013.

Würdig J., Flachowsky H., Saß A., Peil A., Hanke M.V., 2015. Improving resistance of different apple cultivars using the Rvi6 scab resistance gene in a cisgenic approach based on the Flp/FRT recombinase system. Mol. Breed. 35(3), 1–18, https://doi.org/10.1007/s11032-015--0291-8.

Download

Published
2019-09-05



KAROLINA DUDZIAK 
Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
MAGDALENA SOZONIUK 
Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
KRZYSZTOF KOWALCZYK 
Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
MICHAŁ NOWAK 
Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland



License

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.

 

Agronomy Science has adopted a self-archiving policy called blue by the Sherpa Romeo database. From 2021 authors can self-archive article postprints and editorial versions (under the CC BY 4.0 licence). Articles from earlier years (available under the CC BY-NC-ND 4.0 licence) can only be self-archived as editorial versions.


Most read articles by the same author(s)

1 2 > >>