Cross-species hybridizations in situ of genes associated with meat production traits in the wild pig genome

ANNA KOZUBSKA-SOBOCIŃSKA

Departament of Animal Cytogenetics and Molecular Genetics, National Institute of Animal Production, Krakowska 1, 32-083 Balice/Kraków

BARBARA DANIELAK-CZECH

Departament of Animal Cytogenetics and Molecular Genetics, National Institute of Animal Production, Krakowska 1, 32-083 Balice/Kraków

MAREK BABICZ

Department of Pig Breeding and Production Technology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin



Abstract

Ghrelin (GHRL) and uncoupling proteins UCP2, UCP3 play a functional role in global energy metabolism in the body, growth and obesity as well as meat organoleptic quality. The aim of this study was to analyze homology between the regions of human chromosomes involving the encoding loci GHRL, UCP2, UCP3 and the corresponding fragments in the wild pig (Sus scrofa scrofa) genome using the FISH technique. Two commercial human probes (Vysis), specific for regions of 3. and 11, pair autosomes (HSA3p25-26 and HSA11q13) were used for crosshybridizations in situ with wild pig chromosomes – karyotype 36,XY,rob(15;17). The following physical locations were established – the GHRL gene was identified in wild pig autosomal interstitial region SSC13q31-32 whereas UCP2 and UCP3 genes, due to their proximity, were mapped to the same chromosome region SSC9p21-24. Cross-species in situ hybridizations confirmed conservation of the linkage groups and a high degree of homology of chromosome regions containing GHRL, UCP2 and UCP3 loci in human and the domestic and wild pig genomes.

Keywords:

wild pig, comparative FISH mapping, cross-species hybridizations in situ, GHRL, UCP2, UCP3 genes

Chen K., Baxter T., Muir W.M., Groenen M.A., Schoock L.B., 2007. Genetic resources, genome mapping and evolutionary genomics of the pig (Sus scrofa). Int. J. Biol. Sci. 3, 153−165.

Chowdhary B.P., Raudsepp T., Frönicke L., Scherthan H., 1998. Emerging patterns of comparative genome organization in some mammalian species as revealed by Zoo-FISH. Genome Res. 8, 577–589.

Clarke I.J., 2008. Models of ‘obesity’ in large animals and birds. Front Horm. Res. 36, 107−117.

Dong X.Y., Xu J., Tang S.Q., Li H.Y., Jiang Q.Y., Zou X.T., 2009. Ghrelin and its biological effects on pigs. Peptides 30, 1203−1211.

Frönicke L., Chowdhary B.P., Scherthan H., Gustavsson I., 1996. A comparative map of the porcine and human genomes demonstrates ZOO-FISH and gene mapping-based chromosomal homologies. Mamm. Genome 7, 285−290.

Goureau A., Yerle M., Schmitz A., Riquet J., Milan D., Pinton P., Frelat G., Gellin J., 1996. Human and porcine correspondence of chromosome segments using bidirectional chromosome painting. Genomics 3, 252−262.

Gustavsson I., 1988. Standard karyotype of domestic pig. Hereditas 109, 151–157.

Jiang Z., Rothschild M.F., 2007. Swine genome science comes to age. Int. J. Biol. Sci. 3, 129−131.

Johansson M., Ellegren H., Andersson L., 1995. Comparative mapping reveals extensive linkage conservation but with gene order rearrangements between the pig and the human genomes. Genomics 25, 682–690.

Kim K.S., Thomsen H., Bastiaansen J., Nguyet N.T., Dekkers J.C.M., Plastow G.S., Rothschild M.F., 2004. Investigation of obesity candidate genes on porcine fat deposition quantitative trait loci regions. Obes. Res. 12, 1981−1994.

Kozubska-Sobocińska A., Danielak-Czech B., Bąk A., Babicz M., Rejduch B., 2014. Comparative physical mapping of genes associated with meat production traits in the wild pig genome. Chromosome Res. 22, 414.

Li H., Li Y., Zhao X., Li N., Wu C., 2005. Structure and nucleotide polymorphisms in pig uncoupling protein 2 and 3 genes. Anim. Biotechnol. 16, 209−220.

Li Y., Li H., Zhao X., Li N., Wu C., 2007. UCP2 and 3 deletion screening and distribution in 15 pig breeds. Biochem. Genet. 45(1−2), 103−111.

Lunney J.K., 2007. Advances in swine biomedical model genomics. Int. J. Biol. Sci. 3, 179−184.

Milan D., Beever J., Lahbib Y., Schook L., Beattie C., Yerle M., 2006. An integrated RH map of the porcine genome with more than 5000 anchoring points on the human genome provides a frame-work for sequencing of the pig. Proceedings of the 30th International Conference on Animal Genetics, 20−25 August 2006, Porto Seguro, Brazil.

Milan D., Riquet J., Yerle M., Goureau A., Schmitz A., Cribiu E.P., Frelat G., Gellin J., 1996. Homologous and heterologous FISH painting with PARM-PCR chromosome-specific probes in mammals. Mamm. Genome 7, 194–199.

Nowacka-Woszuk J., Szczerbal I., Fijał-Nowak H., Świtoński M., 2008. Chromosomal localization of 13 candidate genes for human obesity in the pig genome. J. Appl. Genet. 49 (4), 373−377.

Rejduch B., Danielak-Czech B., Kozubska-Sobocińska A., 2010. FISH-based comparative analysis of human and porcine chromosome region involving obesity-related genes. Ann. Anim. Sci. 10 (4), 367−372.

Rettenberger G., Klett C., Zechner U., Kunz J., Vogl W., Hameister H., 1995. Visualization of the conservation of synteny between humans and pigs by heterologous chromosomal painting. Genomics 26, 372−378.

Rothschild M.F., Hu Z.L., Jiang Z., 2007. Advances in QTL mapping in pigs. Int. J. Biol. Sci. 3, 192−197.

Sanchez M.P., Iannuccelli N., Basso B., Bidanel J.P., Billon I., Gandemer G., Gilbert H., Larzul C., Legault C., Riquet J., Milan D., Le Roy P., 2007. Identification of QTL with effects on intramuscular fat content and fatty acid composition in a Duroc × Large White cross. BMC Genetics 8, 55–63.

Scherthan H., Cremer T., Arnason U., Weler H.U., Lima-de-Faria A., Frönicke L., 1994. Comparative chromosome painting discloses homologous segments in distantly related mammals. Nature Genet. 6, 342−347.

Werner P., Neuenschwander S., Stranzinger G., 1999. Characterization of the porcine uncoupling proteins 2 and 3 (UCP2 and UCP3) and their localization to chromosome 9 p by somatic cell hybrids. Anim Genet. 30, 221−224.

Yerle M., Echard G., Robic A., Mairal A., Dubut-Fontana C., Riquet J., Pinton P., Milan D., Lahbib-Mansais Y., Gellin J., 1996. A somatic cell hybrid panel for pig regional gene mapping characterized by molecular cytogenetics. Cytogenet. Cell Genet. 73, 194−202.

Yerle M., Pinton P., Delcros C., Arnal N., Milan D., Robic A., 2002. Generation and characterization of a 12,000-rad radiation hybrid panel for fine mapping in pig. Cytogenet. Genome Res. 97, 219−228.
Download

Published
2015-09-30



ANNA KOZUBSKA-SOBOCIŃSKA 
Departament of Animal Cytogenetics and Molecular Genetics, National Institute of Animal Production, Krakowska 1, 32-083 Balice/Kraków
BARBARA DANIELAK-CZECH 
Departament of Animal Cytogenetics and Molecular Genetics, National Institute of Animal Production, Krakowska 1, 32-083 Balice/Kraków
MAREK BABICZ 
Department of Pig Breeding and Production Technology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin



License

From 2022 articles are made available under Creative Commons Attribution 4.0 International licence (CC BY 4.0). Articles published before 2022 are available under Creative Commons Attribution – Non-commercial use – No derivative works  4.0 International licence (CC BY-NC-ND 4.0).

Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.


Most read articles by the same author(s)

<< < 1 2 3 4 5 > >>