Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin

Influence of selected environmental and production factors on mineral nitrogen loss

HALINA LIPIŃSKA

Department of Grassland and Landscape Forming, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin

RAFAŁ KORNAS

Institute of Agricultural Sciences, State School of Higher Education in Chełm, Pocztowa 54, 22-100 Chełm

IZABELLA JACKOWSKA

3 Department of Chemistry, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin

WOJCIECH LIPIŃSKI

Institute of Agricultural Sciences, State School of Higher Education in Chełm, Pocztowa 54, 22-100 Chełm

ANDRZEJ BOCHNIAK

Department of Applied Mathematics and Computer Science, Głęboka 28, 20-612 Lublin

MAŁGORZATA GOLIASZ

Department of Grassland and Landscape Forming, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin


Abstract

Nitrogen, an indispensable component of living organisms can exert a negative impact on various elements of the environment. The study objective is to identify the correlation between certain environment and production factors and mineral nitrogen content in the 60–90 cm soil layer, recognised as a potential loss of this ingredient from the production and economic perspective and as a hazard to water quality. The study is based on the results obtained from 320 points (a total of 2560 samples from the 0–30, 30–60 and 60–90 cm layers), located in mineral soils in the Lublin Province, as part of a Nmin monitoring project in the years 2008–2011. The soil material was collected in the spring and autumn, Nmin content was determined using (the spectrophotometric method) against the background of precipitation and air temperature and groups of crop plants, fertilisation and animal stock at farms where measurement points were located. Livestock and crop cultivation had the greatest impact on Nmin loss. There was no significant impact of the weather conditions and N doses in the mineral fertilizers in the spring measurement period. In contrast, the correlations with the analysed factors were stronger in the autumn.

Keywords:

mineral nitrogen, nitrogen loss, production factors, weather conditions

Arlauskiene A., Maiksteniene S., 2008. The effects of cover crops and straw on soil mineral nitrogen dynamics and losses from arable land. Agron. Vestis 11, 195–201.

Barszczewski J., Szatyłowicz M., 2011. Gospodarka azotem w warunkach zróżnicowanego nawożenia łąki na glebie torfowo-murszowej. Woda Śr. Obsz. Wiej 11, 3 (35), 7–19.

Baryła R., Kulik M., 2006. Content of nitrogen and basic mineral components in pastures during different years of its use. Annales UMCS, sec. E, Agricultura 61, 157–164.

Bosshard C., Sorensen P., Frossard E., Dubois D., Mader P., Nanzer S., Oberson A., 2009. Nitrogen use efficiency of 15N-labelled sheep manure and mineral fertiliser applied to microplots in long-term organic and conventional cropping systems. Nutr. Cycl. Agroecosyst. 83 (3), 271–287.

Czyżyk F., Pulikowski K., Strzelczyk M., Pawęska K., 2011. Wymywanie mineralnych form azotu z gleby lekkiej nawożonej corocznie kompostem z osadów ściekowych i nawozami mineralnymi. Woda Śr. Obsz. Wiej. 11, 4 (36), 95–105.

Dresler S., Bednarek W., Tkaczyk P., 2011. Influence of the type of crop, nitrogen fertilisation, and diverse organic fertilisation on the content of nitrate nitrogen in the soils of eastern Poland. J. Cent. Eur. Agric. 12 (2), 367–379.

Elbl J., Plošek L., Kintl A., Přichystalová J., Záhora J., Friedel J. K., 2014. The effect of increased doses of compost on leaching of mineral nitrogen from arable land. Pol. J. Environ. Stud. 23 (3), 697–703.

Elrashidi M.A., 2015. Effects of precipitation on nonpoint sources of nitrogen contamination to surface waters in the U.S. Great Plains. Commun. Soil Sci. Plant Anal. 46 (1), 16–32.

Follett R.F., 2008. Transformation and transport processes of nitrogen in agricultural systems. In: J.L. Hatfield, R.F. Follett (eds), Nitrogen in the environment. Sources, problems and management. Elsevier, 19–50.

Fornara D.A., Banin L., Crawley M.J., 2013. Multi-nutrient vs. nitrogen-only effects on carbon sequestration in grassland soils. Global Change Biol. 19 (12), 3848–3857.

Fotyma M., Kęsik K., Pietruch Cz., 2010. Azot mineralny w glebach jako wskaźnik potrzeb nawozowych roślin i stanu czystości wód glebowo-gruntowych. Nawozy Nawoż. 38, 5–83.

Fraters D., Leeuwen T., Boumans L., Reij J., 2015. Use of long-term monitoring data to derive a relationship between nitrogen surplus and nitrate leaching for grassland and arable land on well-drained sandy soils in the Netherlands, Acta Agric. Scand., Sec. B, Soil Plant Sci. 65 (2), 144–154.

Jadczyszyn T., Pietruch C., Lipiński W., 2010. Monitoring zawartości azotu mineralnego w glebach Polski w latach 2007-2009. Nawozy Nawoż. 38, 84–110.

Kayser M., Seidel K., Muller J., Isselstein J., 2008. The effect of succeeding crop and level of N fertilization on N leaching after break-up of grassland. Eur. Agron. 29 (4), 200–207.

Lipiński W., 2010. Zasoby azotu mineralnego w glebach gruntów ornych w strefach wrażliwych na zanieczyszczenia azotanami (OSN). Nawozy Nawoż. 38, 111–120.

Lipiński W., Lipińska H., 2008. Strategia ochrony wód w Polsce na tle wymogów dyrektywy azotanowej. Zesz. Nauk. Wyż. Szk. Agrobiz. Łomży 37, 7–16.

Lipiński W., Lipińska H., Kornas R., 2010. Próba oszacowania strat azotu z gleb użytkowanych rolniczo na obszarze Podlasia. Zesz. Nauk. Wyż. Szk. Agrobiz.Łomży 46, 137–142.

Lipiński W., Rutkowska B., Szulc W., 2005. The content of nitrogen mineral forms in soil as a criterion of estimation of soil environment condition. Ecol. Chem. Engin. 1–2, 12, 85–92.

Moller, K. Stinner, W., 2009. Effects of different manuring systems with and without biogas digestion on soil mineral nitrogen content and on gaseous nitrogen losses (ammonia, nitrous oxides). Eur. J. Agron. 30 (1), 1–16.

Myrbeck A., 2014. Soil tillage influences on soil mineral nitrogen and nitrate leaching in Swedish arable soils. Acta Univ. Agric. Suec. 71, 1–74.

Piotrowska A., 2011. Spatial variability of total and mineral nitrogen content and activities of the N-cycle enzymes in a luvisol topsoil. Pol. J. Environ. Stud. 20 (6), 1565–1573.

PN-R-04028, 1997. Analiza chemiczno-rolnicza gleby. Metody pobierania próbek i oznaczania zawartości jonów azotanowych i amonowych w glebach mineralnych. PKN, Warszawa.

Plošek L., Hynšt J., Záhora J., Elbl J., Kintl A., Charousová I., Kovácsová S., 2014. Mineral nitrogen retention, nitrogen availability and plant growth in the soil influenced by addition of organic and mineral fertilizers – lysimetric experiment. Int. Biol. Food Vet. Agric. Engin. 8 (8), 815–819.

Qian J., Zhang L., Wang W., Liu Q., 2014. effects of vegetation cover and slope length on nitrogen and phosphorus loss from a sloping land under simulated rainfall. Pol. J. Environ. Stud. 23 (3), 835–843.

Raave H., Keres I., Kauer K., Nöges M., Rebane J., Tampere M., Loit E., 2014. The impact of activated carbon on NO3- -N, NH4+-N, P and K leaching in relation to fertilizer use. Eur. J. Soil Sci. 65 (1), 120–127.

Randal G.W., Goss M. J., 2008. Nitrate losses to surface water through subsurface tile drainage, In: J.L. Hatfield, R.F. Follett (eds), Nitrogen in the environment. Sources, problems, and management. Elsevier, 145–175.

Shepherd M., Newell-Price P., 2013. Manure management practices applied to a seven-course rotation on a sandy soil: effects on nitrate leaching. Soil Use Manag. 29 (2), 210–219.

Szymczyk S., 2010. Influence of the type of soil dewatering and land use on the dynamics of concentrations and volume of nitrogen discharged from agricutlural areas. J. Elementol. 15 (1), 189–211.

Tripolskaja L., Verbyliene I., 2014. The effect of different forms of nitrogen fertilizers on nitrogen leaching. Zemdir. Agric. 101 (4), 389–394.

Zhang J. B., Zhu T. B., Cai Z. C., Qin S. W., Muller C., 2012. Effects of long-term repeated mineral and organic fertilizer applications on soil nitrogen transformations. Eur. Soil Sci. 63 (1), 75–85
Download


Published
2016-12-19



HALINA LIPIŃSKA 
Department of Grassland and Landscape Forming, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin
RAFAŁ KORNAS 
Institute of Agricultural Sciences, State School of Higher Education in Chełm, Pocztowa 54, 22-100 Chełm
IZABELLA JACKOWSKA 
3 Department of Chemistry, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin
WOJCIECH LIPIŃSKI 
Institute of Agricultural Sciences, State School of Higher Education in Chełm, Pocztowa 54, 22-100 Chełm
ANDRZEJ BOCHNIAK 
Department of Applied Mathematics and Computer Science, Głęboka 28, 20-612 Lublin
MAŁGORZATA GOLIASZ 
Department of Grassland and Landscape Forming, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin



License

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.

 

Agronomy Science has adopted a self-archiving policy called blue by the Sherpa Romeo database. From 2021 authors can self-archive article postprints and editorial versions (under the CC BY 4.0 licence). Articles from earlier years (available under the CC BY-NC-ND 4.0 licence) can only be self-archived as editorial versions.


Most read articles by the same author(s)

1 2 3 > >>